skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pelliconi, Pietro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We employ a probabilistic mesoscopic description to draw conceptual and quantitative analogies between Brownian motion and late-time fluctuations of thermal correlation functions in generic chaotic systems respecting ETH. In this framework, thermal correlation functions of ‘simple’ operators are described by stochastic processes, which are able to probe features of the microscopic theory only in a probabilistic sense. We apply this formalism to the case of semiclassical gravity in AdS3, showing that wormhole contributions can be naturally identified as moments of stochastic processes. We also point out a ‘Matryoshka doll’ recursive structure in which information is hidden in higher and higher moments, and which can be naturally justified within the stochastic framework. We then re-interpret the gravitational results from the boundary perspective, promoting the OPE data of the CFT to probability distributions. The outcome of this study shows that semiclassical gravity in AdS can be naturally interpreted as a mesoscopic description of quantum gravity, and a mesoscopic holographic duality can be framed as a moment-vs.-probability-distribution duality. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026